Atlanta University Center

Digital Commons@Robert W. Woodruff Library, Atlanta
University Center

ETD Collection for AUC Robert W. Woodruft Library

3-1-198S8

Code optimization with stack oriented
intermediate code

Satischandra B. Reddy
Atlanta University

Follow this and additional works at: http://digitalcommons.auctr.edu/dissertations

b Part of the Applied Mathematics Commons, Computer Sciences Commons, and the
Mathematics Commons

Recommended Citation

Reddy, Satischandra B., "Code optimization with stack oriented intermediate code" (1985). ETD Collection for AUC Robert W.
Woodruff Library. Paper 2629.

This Thesis is brought to you for free and open access by Digital Commons@Robert W. Woodruff Library, Atlanta University Center. It has been
accepted for inclusion in ETD Collection for AUC Robert W. Woodruff Library by an authorized administrator of Digital Commons@Robert W.

Woodruff Library, Atlanta University Center. For more information, please contact cwiseman@auctr.edu.


http://digitalcommons.auctr.edu?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu/dissertations?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu/dissertations?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.auctr.edu/dissertations/2629?utm_source=digitalcommons.auctr.edu%2Fdissertations%2F2629&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cwiseman@auctr.edu

CODE OPTIMIZATION WITH STACK ORIENTED INTERMEDIATE CODE

A THESIS
SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE

BY
SATISHCHANDRA B. REDDY
DEPARTMENT OF MATHEMATICAL SCIENCES

ATLANTA, GEORGIA

MARCH, 1985




ACKNOWL EDGMENT

I acknowledge with thanks Dr.Bennett Setzer, Associate
Professor, Department of Mathematical Sciences for his advice
in the preparation of this thesis. I also thank Dr.Benjamin
Martin, Professor and Chair, Department of Mathematical Sciences
for his help and advice throughout my student life at the |
Atlanta University. Thanks are also due to Dr.Nazir Warsi,
Professor, Department of Mathematical Sciences for his

valuable suggestions.



TABLE OF CONTENTS

CHAPTER I

INTRODUCT ION
MACHINE MODEL

MACHINE INSTRUCTIONS

CHAPTER II

STRUCTURE OF A COMPILER

CHAPTER IT1I

ALGORITHM 1

ALGORITHM II

APPENDIX A

REFERENCES

-16

11




CHAPTER I

INTRODUCTION:

The problem discussed in this paper is related to the
optimization of straightline segments of computer code.
The general approach is to convertithe straightline code
into directed acyclic graphs with labels and then convert

them into straightline code.

Two algorithms aimed at optimization are presented.
Algorithm-1 converts the given code into a DAG. Algorithm -
IT1 utilizes a DAG similar to the one produced by Algorithm-
I and produces efficient code. The DAG may have been produced
from the first DAG by optimization techniques. DAG to DAG

optimization techniques are not discussed in this paper.

MACHINE MODEL:

The machine has a random access memory and the memory
cells are numbered 0,1,2,3,... The machine has a built-in
stack of infinite depth and all computations take place in

this stack. It is assumed that the stack and memory do. not

overlap.
MACHINE INSTRUCTIONS:

The machine instructions are PICK n, ROLL n, STORE, FETCH,

LIT n, OP x and DROP, where n is a positive integer or zevro

-1-




and x is a binary operator. These operations are discussed

below.

1. PICK n : Place a copy of the nth value from the
top of the stack onto the top of the stack. e.g. if
a,b,c,d,... (a on the top) is the initial stack
configuration then after PICK 3 in the final stack
configuration will be c¢,a,b,c,d,... Top is

incremented hy 1.

2. ROLL n : Remove the nth value from the top of the
stack and place it on the top of the stack. e.g. if
a,b,c,d,... are on the stack (a on the top) then the stack

status after ROLL 3 will be c,a,b,d,...

3. STORE : Pop the top two elements from the stack and
place Stack(top-1) into a memory location whose address is
Stack(top). e.g. if m and n are on the stack (m on the
top) then after STORE the contents of memory location m

will be n.

4, FRTCH : Replace the Stack(top) with the contents of

the memory location whose address is Stack(top).

5. LIT n : Place the value n on the top of the stack

and increment the top by 1.




6., OP x : Pop the top two elements of the stack and
perform x(Stack(top), Stack(top-1)) and push this value

onto the stack. The top is decremented by 1.

7. DROP : Remove the top element from the stack and

decrement the top.

It may be noted that the operations 1 and 5 increase
the size of the stack hy 1; 2 and 4 neither increase nor
decrease the size; 6 and 7 decrease the stack by 1 and the

operation 3 decrease the stack by 2.

The study of programs for a stack oriented machine
has practical importance in view of the existence of such
machines (e.g. Burroughs 5000 family). It may be noted
that the machine instructions discussed above are
implemented in the Forth language. Also, some compilers

produce intermediate code of this form.



CHAPTER 11
STRUCTURE OF A COMPILER:
The following diagram describes a compiler.

Source Progranm

J,

Lexical Analyzer

Parser

Intermediate Code Generator

Code Optimizer

Code Generator

Target Program

The lexical analyzer takes the source program as
input and identifies the basic lexical units of the
program and reports any errors it discovers. The parser
accepts the output of the lexical analyzer as input and
verifies whether the source program satisfies the
specifications of the language compiled and groups together

the tokens into syntactic structures.




The intermediate code generator takes the output

of the parser as input and breaks it into a sequence of
straightline code segments called blocks and then produces
a stream of instructions in the language described earlier.
Such a block has two important properties which are

described below.

1. The control in such a block enters only at the

beginning and leaves only at the end.
2., Within a block the flow of control is sequential.

The code optimizer accepts the straightline code and

generates a DAG. An algorithm for this conversion is

given in the next chapter. A DAG is a directed-acyclic graph

with no cycles and with labels on nodes. Each node has a
label which holds the instruction, the number of parents of
the node and a number which indicates the order in which the
node was created. Finally, the code generator takes the
DAG with labels and emits code. An algorithm to this

effect is presented in the next section.



CHAPTER III

The reported work on code optimization can be divided

into two classes. The first consist of proven optimal

methods and the second consist of code improvement methods.
The former class is much smaller than the latter one. Many
of the proven techniques involve optimizing arithmetic

expressions which have no common subexpressions.

The optimization techniques are also classified as
machine dependent or machine independent. The former class
exploit the special features of the target machines which

may have the following capabilities.
1. The machine has n accumulators or n registers.

9. The machine can execute several instructions in

parallel.

3. The machine can execute instructions (both

arithmetic and logical) upon multiple data streams.

The latter class, also called architecture independent
techniques, use the nature of the data, operators in hand
and are not dependent on the peculiarities of the machine.

Some of the techniques are described below.

1. Constant folding: Performing the operations whose

operands are known at the compilation time.




2. Identifying and removing the null operations. e.g-.

adding a 0 or multiplying by 1.

3. Making use of the algebraic properties such as

commutativity, associativity and distributivity.

4. Code motion: Moving the loop-invariant computation

out of the loop.

5. Eliminating redundant operations by identifying the

common subexpressions.
6. Eliminating the dead or useless variables.
7. Loop jamming etc.

The problem of generating optimal code from DAGs has
already been studied. Bruno and Sethi have shown that the
problem is NP-complete for a single register machine. Aho,
Johnson and Ullman have shown that the problem remains
NP-complete even when the DAGs are almost trees (i.e., all
nodes with more than one parent are interior nodes whose

children are leaves),

We now present two algorithms. Algorithim-I constructs
a DAG from a sequence of intermediate code block and

Algorithm-11 generates the code.



ALGORITHM- 1 Constructing a DAG

INPUT A basic block.

ouUTPUT : A DAG with the following information. Each
node has three label fields-one holds a number which tells
the order which the node was created; the second holds the
instruction; and the third holds the number of parents the

node has,

DATA STRUCTURES: [t is assumed that suitable data
structures are available to create linked lists of labeled

nodes.

METHOD: The DAG construction process is to do the
following steps 0 through 1 for each statement ofuthe
block. Initially the DAG is empty. A newly created node
has the number of parents equal to 0 and the rest of the
fields empty. Link fields are assumed to be null. We also

assume the existence of a stack S.

STEP-0 : Number all the instructions in a sequence starting

from 1 except the instructions PICK, ROLL and DROP.
STEP-1 : Read each instruction. Case(Instruction) of

LIT n : Create a node.
Set

Number_label = Instruction_number




Instruction_label = LIT n

Push a pointer to the node onto the stack S.

OP X : Create a node.,

Set

Number_label = Instruction_number

Instruction_label = OP x

This node will have as its left and right children
the the last two nodes (pointed to by the last two pointers
on the stack) of the stack S. The parent field of each of
these nodes is incremented by 1 and the top two nodes of

the stack are popped and a pointer to the current node is

pushed onto S.

PICK n : A copy of the contents of the nth node of the

stack S is pushed onto S. The parent field of the child

node is incremented.

ROLL n : The nth node in the stack is removed and its
contents are placed on S.
STORE : Create a node.

Set

Number_label = Instruction_pumber

Instruction_label = STORE

This node will have as its left and right children

the nodes pointed to by the top two nodes of the stack S.




FETCH : Creatc a node.
Set

Number_label =

instruction number,

child node.

DROP : Delete the top node

END. (Algorithm-1I)

Tracing the algorithm
the DAG shown below. (The
the DAG on the right. The

DAG from the code is given

1, LIT 1
2. FETCH
3. LIT 2
4. FETCH
PICK 2
PICK 2

PICK 2

The parent field of each of these nodes is incremented and

then these two nodes are deleted from the stack.

Instruction_number

Instruction_label = FETCH

Replace the top of the stack by a pointer to the

Increment the parent field of the

of S.

with the following code produces
code is shown on the left and

step by step derivation of the

in the Appendix-A).



OopP +
PICK 1
LIT 3
STORE
PICK 2
OopP +
ROLL 2
OopP +
oP -
LIT 4
STORE

DROP

From the DAG it is clear that all the parent node

numbers are higher than those of their children. Parents
use the data computed by the children. It may be noted
here that the parents are created after their children.

i.e., the DAG is constructed bottom-up.

We shall now present an algorithm which takes the DAG

as input and outputs the code. -
ALGORITHM - II Producing_ the_Code_From_the_ DAG

INPUT : The root nodes of the DAG.

OuTPUT : The straight line code.

-11-



5. Op +

PICK 1
6. LIT 3
7. STORE

PICK 2
8. OP +

ROLL 2
9. OP +
10. OP -
11. LIT 4
12. STORE

DROP

From the DAG it is clear that all the pareni node
numbers are higher than those of their children. Parents
use the data computed by the children. It may be noted
here that the parents are created after their children.

i.e., the DAG is constructed bottom-up.

We shall now present an algorithm which takes the DAG

as input and outputs the code.

ALGORITHM - Il Producing the_Code_ From_the_ DAG
INPUT : The root nodes of the DAG.

OUTPUT : The straight line code.

-11-




METHOD : Follow each root node and traverse the tree in

any one of the orders viz., preorder, postorder or inorder.
As the tree pertaining to the root is traversed put all the
nodes in a list (let us call this list as the old_list) if
the node visited is not already in the list. Repeat this

procedure until all the root nodes are exhausted. Now sort

this 1list by the node number.
For every node in the old_list do the following

(If) The node is a leaf (Then)
(If) the node has one parent (Then)
1. Generate the instruction.
2. Attach the instruction number to the new_list
(Else) (i.e. the node has more than one parent)
1. Generate the instruction.
2. Attach the instruction_number to the new_list.,
3. Reduce the number of parents of the node by 1.
(Else) (i.e. the interior node or a root)
(If) The node has one child (Then)
(I1f) The node has one parent (Then)
(If) The node is at the end of the new list (Then)
1. Generate the instruction.
2. Replace the previous instruction number by the
present instruction number in the new_list.

(Else) (i.e. the node is not at the end of the

-12-



new_list)

1. Print 'ROLL k' where k is the position of the
(child) node in the new_list.
2. Remove the kth node from the list.
(Else) (i.e. the node has two or more parents)
1. Print 'PICK k' where k is the position of the
node in the new_list.

2. Attach a copy of the kth node in the new_list
to the new_list,

(Else) (i.e. the node has two children : The instruction
contained must be either OP x or STORE.)

A, (If) The right child has one more parent other than the

present (Then)

1. Print 'PICK k' where k is the position of the
node in the new_list.

2. Reduce the number of parents of this node by 1.

3. Attach a copy of the kth node in the new list
to the new_list.

(Else)

Print 'ROLL k' where k is the position of the node in
the new_list, if the child is not at the end of the
new_list. Remove the kth node from the new_list and
add it to the end of the new _list if 'ROLL k' is

performed.

B. Repeat Step - A (above) for the left child.

-13-




1.

2.

1. LIT 1

2. FETCH

3. LIT 2
4., FETCH
PICK 1
PICK 3
9. OP +
6. LIT 3
PICK 2
ROLL 2
7. STORE

PICK 3

Generate the instruction.

Delete the last two elements from the new_list
and add the current instruction number (old_
list) to the new_list if the instruction is OP
x and has no parents after deleting the last
two elements from the list. Otherwise just

delete the last two elements from the list.

END. (Algorithm-I1)

Algorithm-I11 applied to the DAG of page 10 produces the
following code. The numbers that appear on the right

denote the status of the stack at any given stage.




8. OP + 2,4,8
ROLL 3 4,8,2
9. OP + 4,9
10. OP - 10
11, LIT 4 10,11

12. STORE

While the code was produced by the Algorithm-I1I, all
the nodes that were in the old_list was kept in the new_list
and whenever a node was processed from the new_list, the
number of parents of each node was reduced. So if a node |
had n parents, then that node remained in the list as long
as it was not processed n times or until the number of

parents of that node was greater than 0.

If the node was a leaf node, then the instruction was
printed as it was and if the node was not a leaf then the
algorithm searched the list and got the right and left
children of the node and produced either PICK n or ROLL n
depending upon the number of parents of that child node, n
being the position of the node in the new_list. Also, it
may be noted that the nodes of the list encountered was the
same as that of the original code. By induction the two
codes (both the original as well as the one produced by the

Algorithm -I1 ) produce the same result.

-15-




CONCLUSION:

The problem of producing stack oriented code from an
intermediate code was discussed in this paper. The
approach was to translate the intermediate code into DAGs
and then to convert the DAGs back into code. We have
presented two algorithms to this effect and have shown
intuitively that they‘produce equivalent code. DAG to DAG
optimization was not considered. Much light has to be
shed on this aspect. The author feels that further studies
should be done in this area. A transformed, possibly an
optimized DAG, fed as input to Algorithm-I11 may produce

more efficient code.

-16-




APPENDIX - A



Step by step derivation of the DAG for the example on page 10,

1. LIT 1 C) 1

2. FETCH @ 2

3. LIT 2 2,3
®

4. FETCH " 2,4

®© &

PICK 2 Same DAG 2,4,2
PICK 2 Same DAG 2,4,2,4
PICK 2 Same DAG 2,4,2,4,2

2,4,2,5

PICK 1 Same DAG 2,4,2,5,5




6. LIT 3 GD 2,4,2,5,5,6

7. STORE 2,4,2,5
|
|
|
|
PICK 2 Same DAG
8. OP +

ROLIL 2 Same DAG



9. OP +

10. OP -




11, LIT 4 2,10,11

12. STORE 2

DROP -




REFERENCES

1. Aho, A.V., Johnson, S.C., Ullman, J.D., [1977], "Code
Generation for Expressions with Common Subexpressions," J.ACH

24:1, 146-160.

2. Aho, A.V., Ullman, J.D., [1979], Principles of Compiler
Design, Addison-Wesley Publishing Company, Reading, Mass.

3. Barret, William A., Couch, John D., [1979], Compiler
Construction : Theory and Practice, Science Rescarch

Associates.

4. Bruno,dJ.L., Lassagne, T., [1975], "The Generation of Optimal
Code for Stack Machines," J. ACM 22:3, 382-397.

5. Bruno, J.L., Sethi, R., [1976], "Code Generation for One
Register Machine," J. ACM 23:3 502-510.

6. Sethi,'R., [1975], "Complete Register Allocation Problems,"
SIAM J. Computing, 4:3, 226-248.

7. Sethi, R., Ullman, J.D., [1970]. "The Generation of Optimal
Code for Arithmetic Expressions," J.ACM 17:4, 715-728.




	Atlanta University Center
	DigitalCommons@Robert W. Woodruff Library, Atlanta University Center
	3-1-1985

	Code optimization with stack oriented intermediate code
	Satischandra B. Reddy
	Recommended Citation


	tmp.1461269129.pdf.4yoK1

